Parametri fisici (con Pad-Pak installato)

Dimensioni: 20 x 18,4 x 4,8 cm (8,0 x 7,25 x 1,9 pollici)

Peso: 1,1 kg (2,4 libbre)

Parametri ambientali

Temperatura di funzionamento: da 0 a 50 °C (da 32 a 122 °F) Temperatura in standby: da 0 a 50 °C (da 32 a 122 °F)

Temperatura durante il trasporto: da -10 a 50 °C (da 14 a 122 °F) per massimo due

giorni. Se il dispositivo è stato conservato al di sotto di 0 °C (32 °F), deve essere portato e conservato a una temperatura ambiente compresa fra 0 e 50 °C

(da 32 a 122 °F) per almeno 24 ore prima dell'uso.

Umidità relativa: dal 5 al 95% (senza condensa) Involucro: IEC 60529/EN 60529 IP56 da 0 a 4575 metri (0-15000 piedi) Altezza:

Scarica: MIL STD 810F. Metodo 516.5. Procedura 1 (40G) MIL STD 810F Metodo 514.5 Procedura 1, Categoria 4 Vibrazione:

MIL STD 810F Metodo 514.5 Procedura 1, Categoria 7

Pad-Pak e Pediatric-Pak

Peso: 0,2 kg (0,44 libbre)

Tipo di batteria: batteria combinata monouso e cartuccia di elettrodi per

defibrillazione (litio biossido di manganese (LiMnO₂) 18 V)

Capacità batteria (nuova): >60 scariche a 200 J o 6 ore di monitoraggio continuo

Capacità batteria (4 anni): >10 scariche a 200 J

Durata in standby: vedere la data di scadenza sul Pad-Pak.

Tipo di elettrodi: monouso preassemblati, combinazione sensore ECG/

piastra elettrodo

Posizionamento elettrodi: Adulti: anteriore-laterale

Bambini: anteriore-posteriore o anteriore-laterale

Area attiva elettrodi: 100 cm² Lunghezza cavo elettrodi: 1 m (3,5 piedi)

Durata degli elettrodi: vedere la data di scadenza sul Pad-Pak.

Sistema analisi paziente

Metodo: valuta l'ECG del paziente, la qualità del segnale, l'integrità del

contatto degli elettrodi e l'impedenza del paziente per stabilire

se è necessaria la defibrillazione

Sensibilità/Specificità: conforme a IEC 60601-2-4

Interfaccia utente

Messaggi visivi: collegare le piastre, allontanarsi, eseguire la CPR, applicare

la scarica ora, auto-test superato - stato pronto

Messaggi sonori: numerosi messaggi vocali guidano l'utente nella seguenza

di funzionamento (vedere "Elenco dei messaggi vocali" a

pagina 39).

Lingue: contattare il proprio distributore HeartSine autorizzato.

Controlli: due pulsanti: "On/Off" e "Scarica"

Performance defibrillatore

Tempi all'erogazione della scarica (batterie nuove) o dopo 6 scariche:

Tempo di ricarica: tipicamente 150 J in < 8 secondi, 200 J in < 12 secondi

Dopo CPR: tipicamente 8 secondi Intervallo di impedenza: da 20 Ω a 230 Ω

Scarica terapeutica

Forma d'onda: forma d'onda in aumento bifase SCOPE (Self Compensating

Output Pulse Envelope). La forma d'onda bifase ottimizzata compensa l'energia, la pendenza e l'inviluppo per l'impedenza

del paziente

Energia: le impostazioni preconfigurate di fabbrica per l'aumento

dell'energia corrispondono alla Versione AHA/ERC 2010 Adulti: scarica 1: 150 J; scarica 2: 150 J; scarica 3: 200 J Bambini: scarica 1: 50 J; scarica 2: 50 J; scarica 3: 50 J

Registrazione eventi

Tipo: Memoria interna

Memoria: 90 minuti di ECG (visualizzazione completa) e registrazione

eventi/incidenti

Revisione: cavo USB personalizzato collegato direttamente a un PC e

software di revisione dati Saver™ EVO basato su Windows

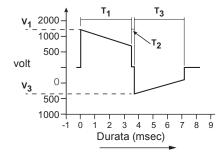
Compatibilità elettromagnetica

CEM: IEC60601-1-2 Emissioni di radiazione: IEC55011

Scarica elettrostatica: IEC61000-4-2 (8 kV)

Immunità RF: IEC61000-4-3 80 MHz – 2,5 GHz, (10 V/m)

Immunità campo magnetico: IEC61000-4-8 (3 A/m)


Aereo: RTCA/DO-160F, Sezione 21 (Categoria M)

RTCA DO-227 (ETSO-C142a)

Forma d'onda bifase SCOPE™

II SAM 350P eroga una forma d'onda bifase SCOPE (Self Compensating Output Pulse Envelope). Questa forma d'onda ottimizza automaticamente l'inviluppo della forma d'onda (ampiezza, pendenza e durata) per un'ampia gamma di impedenze dei pazienti, da 20 ohm a 230 ohm. La forma d'onda erogata al paziente è una forma d'onda esponenziale troncata bifase compensata a impedenza ottimizzata che integra un protocollo di aumento di energia di 150 joule, 150 joule e 200 joule. La durata di ogni fase viene regolata automaticamente per compensare le diverse impedenze del paziente. La durata della prima fase (T1) è sempre equivalente alla durata della seconda fase (T3). La pausa interfase (T2) è sempre costante (0,4 ms) per tutte le impedenze del paziente.

Le caratteristiche specifiche della forma d'onda SCOPE per un impulso di 150 joule sono elencate a lato.

Resistenza (ohm)	Tensione forma d'onda (volt)		Durata forma d'onda (ms)	
	V ₁	Tilt %	T ₁	T ₃
25	1.640	63,1	3	3
50	1.650	52,7	4,5	4,5
75	1.660	51,4	6,5	6,5
100	1.670	48,7	8	8
125	1.670	50,4	10,5	10,5
150	1.670	48,7	12	12
175	1.670	48,7	14	14
200	1.670	47,6	15,5	15,5
225	1.680	46,7	17	17

Specifiche della forma d'onda Pad-Pak adulti Tutti i valori sono nominali

Resistenza (ohm)			Tensione forma d'onda (volt)		Durata forma d'onda (ms)	
		V ₁	Tilt %	T,	T ₃	
25	47,5	514	55,6	7,8	5,4	
50	51,3	671	50,4	8,8	6	
75	52,1	751	47,1	10	6,6	
100	51,8	813	44,3	10,8	6,8	
125	52,4	858	41,4	11,5	7,3	

Specifiche della forma d'onda Pediatric-Pak Tutti i valori sono nominali

Algoritmo di analisi dell'aritmia

Il SAM 350P utilizza l'algoritmo di analisi dell'aritmia dell'ECG HeartSine samaritan®. Questo algoritmo valuta l'ECG del paziente per verificare se è appropriata una scarica terapeutica. Se è necessaria una scarica, il SAM 350P si carica e avvisa l'utente di premere il pulsante della scarica. Se la scarica non è consigliata, il dispositivo entra in pausa per consentire all'utente di eseguire la CPR.

La performance dell'algoritmo di analisi dell'aritmia dell'ECG del SAM 350P è stata ampiamente valutata mediante diversi database di tracciati ECG reali, tra cui il database dell'American Heart Association's (AHA) e il database del Massachusetts Institute of Technology MIT – NST.

La sensibilità e la specificità dell'algoritmo di analisi dell'aritmia dell'ECG del SAM 350P soddisfano i requisiti previsti da IEC60601-2-4.

La performance dell'algoritmo di analisi dell'aritmia dell'ECG del SAM 350P viene riepilogata nella tabella seguente:

Classe ritmo	Dimensioni del campione test ECG (secondi)	Specifiche performance necessarie	Risultati performance (%)	Limite inferiore di confidenza monolato al 90%
Ritmo defibrillabile: Fibrillazione ventricolare (VF)	14.538	Sensibilità > 90%	97,03	95,31
Ritmo defibrillabile: Tachicardia ventricolare (VT)	2.321	Sensibilità > 75%	92,55	80,52
Ritmo non defibrillabile: Ritmi non defibrillabili combinati	301.177	Specificità > 95%	98,30	95,02
Ritmo non defibrillabile: asistole	11.507	Specificità > 95%	100*	100*

^{*}Nessun errore da misurare

Guida e dichiarazione del costruttore - emissioni elettromagnetiche

Il SAM 350P è previsto per funzionare nell'ambiente elettromagnetico sotto specificato. Il cliente o l'utente del SAM 350P deve assicurarsi che il dispositivo venga utilizzato in tale ambiente.

Prova di emissione	Conformità	Ambiente elettromagnetico – guida	
Emissioni RF CISPR 11	Gruppo 1	II SAM 350P utilizza energia RF solo per il funzionamento interno. Perciò, le emissioni RF sono molto basse e verosimilmente non causano interferenze con gli apparecchi elettronici vicini.	
Emissioni RF CISPR 11	Classe B		
Emissioni armoniche IEC/ EN 61000-3-2	Non applicabile	Il dispositivo è adatto per l'uso in tutti gli edifici, inclusi quelli domestici e quelli direttamente collegati alla rete di alimentazione pubblica a bassa tensione che alimenta gli	
Emissioni di fluttuazioni di tensione/flicker IEC/EN 61000-3-3	Non applicabile	edifici utilizzati a scopi domestici	